¹«º£²Ê´¬

¹«º£²Ê´¬

½ñÈÕÌìÆø£º

ʦ×ʲ½¶Ó

ʦ×ʲ½¶Ó

Ä¿½ñλÖ㺠Ê×Ò³ > ʦ×ʲ½¶Ó > ¸±½ÌÊÚ

¸±½ÌÊÚ

Îâ ¼Î

¡¡¡¡


Îâ¼Î £¬1984ÄêÉú¡£ÃâÊÔ½øÈë±±´ó¹¥¶Á±¾Ë¶ £¬Â÷¨¹é¹ú²©Ê¿ £¬¸±½ÌÊÚ £¬²©Ê¿Éúµ¼Ê¦¡£ÏÖΪÎÒУÓÍÆøµØÇò»¯Ñ§ÊµÑéÊÒ¸±Ö÷ÈÎ £¬µØÇò»¯Ñ§½ÌѧÍŶÓÈÏÕæÈË £¬¡°Ë«Ò»Á÷ѧ¿Æ¡±Æ½Ì¨Éî²ãÓÍÆø³É²Ø»úÀíÑо¿ÍŶӡ¢Éî²ã-³¬Éî²ãÓÍÆø³É²ØÀíÂÛѧ¿ÆÁ¢ÒìÒýÖÇ»ùµØÍŶӳÉÔ±¡£Ö÷½²±¾¿ÆÉú¿Î³Ì¡¶ÓÍÆøµØÇò»¯Ñ§¡·¡¢¡¶µØÇò»¯Ñ§ÊµÑéÆÊÎö¡·ºÍÑо¿ÉúÈ«Ó¢ÎĿγ̡¶Petroleum Geochemistry¡·£¨½ÌÓý²¿µÚ¶þÆÚÀ´»ªÁôѧӢÓïÊÚ¿ÎÆ·Åƿγ̣©¡¢¡¶Í¬Î»ËصØÇò»¯Ñ§¡·ºÍ¡¶µØÇò»¯Ñ§ÊµÑéÊÖÒÕ¡·¡£Áí¼ÓÈ롶·´Ó¦¶¯Á¦Ñ§Óë·Ö×ÓÄ£Äâ¡·¡¢¡¶µØÇò»¯Ñ§Ç°ÑØÏ£Íû¡·µÈ¿Î³ÌµÄ½Ìѧ¡£

Îâ¼Î´ÓÊÂʵÑéµØÇò»¯Ñ§Ñо¿Ê®ÓàÄê £¬ÖÂÁ¦ÓÚµØÖÊÒºÏàÁ÷ÌåϵͳµÄÑо¿¡£½üÄêÀ´ÒýÈë·Ö×ÓÄ£Äâ×÷Ϊ»ù´¡Ñо¿µÄÐÂÊֶΠ£¬ÖúÁ¦Ïà¹Ø¿ÆѧÎÊÌâµÄÁ¢ÒìÐÔÊìϤ¡£×÷ΪÓÍÆø×ÊÔ´Óë̽²â¹ú¼ÒÖصãʵÑéÊÒµÄÉúÅÅÌþÈÈÄ£ÄâʵÑéƽ̨ÈÏÕæÈË £¬Îâ¼ÎËù´øÁìµÄ¿ÎÌâ×éÏÖÔÚ×ÅÖØÓÚÓÍÆøµØÇò»¯Ñ§ÖÐÓлú-ÎÞ»úÏ໥×÷ÓõÄÑо¿ £¬°üÀ¨·Ö×Ó²ãÃæµÄÉúÌþ»úÀí¡¢ÉúÌþ¶¯Á¦Ñ§¡¢Î¢Á¿ÔªËØ»òÉúÎï±ê¼ÇÎ︳´æ״̬µÈ¿ÆѧÎÊÌâ¡£ËùÈÏÕæµÄʵÑéƽ̨ӵÓÐ3Àà×°±¸£º»Æ½ð¹ÜÈÈÄ£ÄâʵÑé×°Öá¢ÉúÅÅÌþÈÈÄ£ÄâʵÑé×°ÖúÍË®ÈȽð¸Õʯѹǻ¡£ÅäÌ×ʵÑéÆ÷²Ä°üÀ¨£ºÏÔ΢벻¡º¸»ú £¬µª´µÒÇ £¬Õæ¿Õ¸ÉÔïÏä £¬È¡ÑùÕæ¿Õ¹Ü· £¬Ë«Â·Ð§ÀÍÆ÷һ̨¡£

Ä¿½ñ¿ÎÌâ×éÖ°Ô±×é³É£ºÊµÑéÔ±1Ãû £¬²©Ê¿2Ãû £¬Ë¶Ê¿6Ãû £¬±¾¿ÆÉú5Ãû¡£


°ì¹«ÊÒ£ºµØÖÊÂ¥920¶« Email£ºjia.wu@cup.edu.cn µç»°£º010-89739128


¸ßθßѹʵÑéºÍ·Ö×ÓÄ£Äâ×÷ΪÑо¿ÊֶΠ£¬Ó¦ÓùæÄ£ÆÕ±é £¬½Ó´ý¾ßÓÐÏà¹ØÑо¿Åä¾°µÄʦÉúÇ°À´¹ÛĦºÍ½»Á÷¡£ÓÐÒâÍùµØ»¯Ïà¹ØÑо¿ÁìÓòÉú³¤µÄ±¾¿ÆͬÑâ £¬¿ÉÉêÇëÅÔÌý±¾¿ÎÌâ×é×é»á £¬¼ÓÈëÏà¹Ø¿ÆÑÐѵÁ·¡£ÓûÔÚ±¾¿ÎÌâ×éÍ걾Ǯ¿Æ±ÏÉè £¬ÇëÔÚ´óÈýÏÂÓëÎâ¼ÎÏÈÉúÁªÏµ¡£


½ÌÓýÅä¾°

2009Äê10ÔÂ?2013Äê6Ô £¬·¨¹ú¿ËÀ³ÃÉ·ÑÀʵڶþ´óѧ £¬µØÇò¿Æѧϵ £¬²©Ê¿

2006Äê9ÔÂ?2009Äê7Ô £¬±±¾©´óѧ £¬µØÇòÓë¿Õ¼ä¿ÆѧѧԺ £¬Ë¶Ê¿

2002Äê9ÔÂ?2006Äê7Ô £¬±±¾©´óѧ £¬»¯Ñ§Óë·Ö×Ó¹¤³ÌѧԺ £¬Ñ§Ê¿


ÊÂÇéÂÄÀú

2014Äê6ÔÂÖÁ½ñ £¬¹«º£²Ê´¬£¨±±¾©£© £¬µØÇò¿ÆѧѧԺ £¬¸±½ÌÊÚ

2019Äê8Ô £¬·¨¹ú¿ËÀ³ÃÉ·ÑÀÊ £¬·¨¹ú¹ú¼Ò¿ÆÑÐÖÐÐÄÑÒ½¬Óë»ðɽʵÑéÊÒ £¬»á¼ûѧÕß

2018Äê9¡ª10Ô £¬ÃÀ¹ú¼ÓÖÝ¿ÂάÄÉ £¬ÃÀ¹úµçÁ¦ÄÜÔ´ÇéÐÎÑо¿Ôº £¬»á¼ûѧÕß

2015Äê9¡ª10Ô £¬°Ä´óÀûÑÇÅå˹ £¬¿ÆÍ¢´óѧӦÓõØÖÊϵºÍµØÇò»¯Ñ§Ïµ £¬»á¼ûѧÕß

2013Äê10Ô¡ª2014Äê6Ô £¬¹«º£²Ê´¬£¨±±¾©£© £¬µØÇò¿ÆѧѧԺ £¬½²Ê¦

2009Äê9Ô¡ª2013Äê4Ô £¬·¨¹ú¹ú¼Ò¿ÆÑÐÖÐÐÄÑÒ½¬Óë»ðɽʵÑéÊÒ £¬Ñо¿ÖúÀí


Ñо¿Æ«Ïò

1. ÓÍÆøµØÇò»¯Ñ§

a) ²î±ðÑõ»¯»¹Ô­Ì¬ÎÞ»úÁ÷Ìå-³Á»ýÓлúÖÊÏ໥×÷ÓûúÀí£¨»ù´¡Ñо¿£©

b) ÉúÌþ¶¯Á¦Ñ§£¨Ó¦Óûù´¡Ñо¿£©

c) ·Ö×Ó±ê¼ÇÎïµÄµØÇò»¯Ñ§ÐÐΪ£¨»ù´¡Ñо¿ºÍÓ¦Óûù´¡Ñо¿£©

d) Ê×´ÎÔËÒÆÄÚÇýÁ¦»úÖÆ£¨»ù´¡Ñо¿ºÍÓ¦Óûù´¡Ñо¿£©

2. »¯Ê¯ÄÜÔ´¿ª·¢Ê¹ÓÃ

a) ΢Á¿ÔªËغÍÉúÎï±ê¼ÇÎïÔÚ³Á»ýÓлúÖÊÖеĸ³´æ״̬£¨»ù´¡Ñо¿£©

b) »¯Ê¯ÄÜÔ´ÁãÅÅ·ÅʹÓõĻù´¡ÀíÂÛ̽Ë÷£¨»ù´¡Ñо¿ºÍÓ¦Óûù´¡Ñо¿£©

c) ³íÓÍ¡¢Ò³ÑÒÓÍÔÚ¿ª²ÉÀú³ÌÖÐÊèÉ¢¼ÍÂÉ»úÀí£¨»ù´¡Ñо¿ºÍÓ¦Óûù´¡Ñо¿£©


¿ÆÑÐÏîÄ¿

ÔÚÑУº

ÓͲØÑõ»¯ÖеÄÁòÑõÒõÀë×Ó;¾¶¼°Æ仯ѧÄÜת»¯¼ÍÂÉ£¨42273052£© £¬2023Äê1ÔÂ-2026Äê12Ô £¬¹ú¼Ò×ÔÈ»¿Æѧ»ù½ðÃæÉÏÏîÄ¿ £¬ÏîÄ¿ÈÏÕæÈË¡£

ÖеͳÉÊì¶È½ÏàÒ³ÑÒÓÍ×ÊÔ´ÐγÉÓëԭλת»¯¿ª²É»úÀí£¨U22B6004£© £¬2023Äê1ÔÂ-2026Äê12Ô £¬¹ú¼Ò×ÔÈ»¿Æѧ»ù½ðÆóÒµÁ¢ÒìÉú³¤ÍŽá»ù½ðÏîÄ¿ £¬ÏîÄ¿Ö÷¸É¡£

»ùÓÚFT-ICR-MSµÄÁ¤ÇàÖʾÛÕûÌå¼°Æä°ü¹ü×é·ÖµÄЭͬÑÝ»¯¼ÍÂÉÑо¿£¨SKLOG202123£© £¬ 2021Äê5ÔÂ-2023Äê5Ô £¬ÓлúµØÇò»¯Ñ§¹ú¼ÒÖصãʵÑéÊÒ¿ª·Å¿ÎÌâ»ù½ð £¬ÏîÄ¿ÈÏÕæÈË¡£

½áÌ⣺

³¬Éî²ã¼°ÖÐÐÂÔª¹Å½çÓÍÆø×ÊÔ´Ðγɼá³Ö»úÖÆÓëÂþÑÜÕ¹Íû£¨2017YFC0603102£© £¬02¿ÎÌ⣺³¬Éî²ãÇéÐÎÓÍÆøÌìÉúÓëÌþÔ´ÔîÓÐÓÃÐÔÆÀ¼Û £¬×¨Ìâ3£º³¬Éî²ã¼°ÖÐÐÂÔª¹Å½çÈÈÌåÖÆÓëÓлúÖʳÉÌþÑÝ»¯ £¬2018Äê5ÔÂ-2021Äê12Ô £¬¹ú¼ÒÖصãÑз¢ÍýÏëÏîÄ¿ £¬×¨ÌâÈÏÕæÈË

Á¤ÇàÖʴμ¶½á¹¹ÓëÖÐС·Ö×ÓµÄÏ໥×÷Óã¨No. PRP/indep-3-1715£© £¬2017Äê12ÔÂ-2019Äê12Ô £¬ÓÍÆø×ÊÔ´Óë̽²â¹ú¼ÒÖصãʵÑéÊÒ×ÔÖ÷¿ÎÌâ»ù½ð £¬ÏîÄ¿ÈÏÕæÈË

º¬Ë®ÏµÍ³Öжþ±½²¢àç·ÔÈÈÎȹÌÐÔµÄʵÑéÑо¿£¨No. 41403049£© £¬2015Äê1ÔÂ?2017Äê12Ô £¬¹ú¼Ò×ÔÈ»¿Æѧ»ù½ðÇàÄêÏîÄ¿ £¬ÏîÄ¿ÈÏÕæÈË

ÉúÅÅÌþ»úÀíʵÑéÑо¿ÄÜÁ¦½¨É裨No. 2462014YJRC002£© £¬2014Äê1ÔÂ?2017Äê3Ô £¬¹«º£²Ê´¬£¨±±¾©£©¿ÆÑлù½ð £¬ÏîÄ¿ÈÏÕæÈË

ÌþÔ´ÑÒÉúÅÅÌþÀú³ÌÓëÆ京ÓÍÆøÄÜÁ¦µÄ¹Øϵ£¨No. PRP/open-1311£© £¬2013Äê12ÔÂ?2015Äê12Ô£© £¬ÓÍÆø×ÊÔ´Óë̽²â¹ú¼ÒÖصãʵÑéÊÒ¿ª·Å¿ÎÌâ»ù½ð £¬ÏîÄ¿ÈÏÕæÈË


µÚÒ»×÷ÕßÎÄÕÂ

Îâ¼Î, ºÎÀ¤, ÃÏÇìÇ¿, ¬ºè, ÖÓÄþÄþ, ·½Åó, ÍõÔ¶, ¼¾¸»¼Î, ÑîÑÇÄÏ, »ÆÏþΰ, À, ÕÔÖÒ·å, 2022. ³Á»ýÅèµØ³¬Éî²ãÓлú-ÎÞ»ú¸´ºÏÉúÌþ»úÀí¼°µØÖÊģʽ. µØÖÊѧ±¨: 1-13.

Îâ¼Î, ¼¾¸»¼Î, ÍõÔ¶, Krooss B M, ºÎÀ¤, ½ðÏö, ÂÞÇéÓÂ, ÑîÑÇÄÏ, ÖÓÄþÄþ. 2022. ÇâÒݶȶԳÁ»ýÓлúÖÊÈÈÑÝ»¯µÄÓ°Ïì: ³¬Éî²ãÉúÌþµÄÆôʾ. Öйú¿Æ ѧ: µØÇò¿Æѧ, 52, doi: 10.1360/N072022-0001

Wu, J., Ji, F., Wang, Y., Kross, B., He, K., Jin, X., Luo, Q., Yang, Y., Zhong, N., 2022. Influence of hydrogen fugacity on thermal transformation of sedimentary organic matter: implications for hydrocarbon generation in the ultra-depth. SCIENCE CHINA Earth Sciences, 65(1674-7313).

Wu, J., Qi, W., Jiang, F.-J., Luo, Q.-Y., Zhang, C.-L., Hu, H.-Z., Wang, Z., Ma, Q.-S., Tang, Y.-C., 2021. Influence of sulfate on the generation of bitumen components from kerogen decomposition during catagenesis. Petroleum Science, 18(6): 1611-1618.

J. Wu¡ì*, P. Fang¡ì, X. C. Wang*, B. Li, K. Liu, X. Ma, S. Li, and M. Li. (2020) The potential occurrence modes of hydrocarbons in asphaltene matrix and its geochemical implications, Fuel, 278: 118233.

Îâ¼Î*, Æëö©, ÂÞÇéÓÂ, ³ÂȪ, ʦÉú±¦, ÀîÃÀ¿¡, ÖÓÄþÄþ (2019) ¶þ¼×»ù¶þ±½²¢àç·ÔÌìÉúʵÑé¼°µØÇò»¯Ñ§ÒâÒå. ʯÓÍʵÑéµØÖÊ, 41(2): 260-267.             

J. Wu*, and K. Koga (2018) Direct analyses of fluorine in aqueous fluids extracted from 1-GPa experiments. Chemical Geology, 502, 44-54.

J. Wu*, Z. Ni, S. Wang, and H. Zheng (2018) An in-situ Raman study on pristane at high pressure and ambient temperature. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 189, 215-220; doi: 10.1016/j.saa.2017.07.026.

J. Wu*, S. Wang, and H. Zheng (2016) The influence of ionic strength on carbonate-based spectroscopic barometry for aqueous fluids: an in-situ Raman study on Na2CO3-NaCl solutions. Sci. Rep. 6, 39088; doi: 10.1038/srep39088.

J. Wu, Z. Li, and X.C. Wang* (2016) Comment on "Behavior of Re and Os during contact between an aqueous solution and oil: Consequences for the application of the Re-Os geochronometer to petroleum" Geochim. Cosmochim. Acta 158 (2015) 1-21, Geochimica Et Cosmochimica Acta, 186, 344-347.

J. Wu* and K.T. Koga (2013) Fluorine partitioning between hydrous minerals and aqueous fluid at 1 GPa and 770¨C947 ¡ãC: A new constraint on slab flux. Geochimica et Cosmochimica Acta, 119(0): 77-92.

J. Wu and H. Zheng* (2010) Quantitative measurement of the concentration of sodium carbonate in the system of Na2CO3-H2O by Raman spectroscopy. Chemical Geology, 273(3-4), 267-271.

Îâ¼Î £¬Ö£º£·É*£¨2009£©³£Î¸ßѹÏÂ̼Ëá¸ùÀë×ÓµÄÀ­ÂüÆ×·å±ê¶¨Ñ¹Á¦³õ̽. ¹âÆ×ѧÓë¹âÆ×ÆÊÎö, 29(3), 690-693.


ÏàÖú×÷ÕßÎÄÕÂ

Zheng, X., Schovsbo, N.H., Luo, Q., Wu, J., Zhong, N., Goodarzi, F., Sanei, H., 2022. Graptolite reflectance anomaly. International Journal of Coal Geology, 261: 104072.

Yang, Y., Zhong, N., Wu, J., Pan, Y., 2022. Deep-basin gas generation via organic¨Cinorganic interactions: New insights from redox-controlled hydrothermal experiments at elevated temperature. International Journal of Coal Geology, 257: 104009.

ÖÜÑ©ÀÙ, Æëö©, »ÆÓñ, ÕÅ»¢È¨, ÅËÊ÷ÐÂ, Îâ¼Î, ·½Åó, 2022. Âêºþ°¼ÏÝ·ç³Ç×éð¤ÍÁ¿óÎï×é³ÉÌØÕ÷¼°Æä³ÉÒò. н®Ê¯Ó͵ØÖÊ, 43(01): 34-41.

Fang, P., Wu, J., Chen, F., Wang, Y., Wang, X.-C., Liu, K., Zhou, M., 2022. The hysteresis of asphaltene-trapped saturated hydrocarbons during thermal evolution. Fuel, 329: 125374.

Fang, P., Wu, J., Li, B., Cheng, B., Song, D., Zhong, N., 2022. Nondestructive investigation on hydrocarbons occluded in asphaltene matrix: The evidence from the dispersive solid-phase extraction. Journal of Petroleum Science and Engineering, 217: 110890.

Jin, X., Wu, J., Silva, R.C., Huang, H., Zhang, Z., Zhong, N., Tutolo, B.M., Larter, S., 2021. Alternate routes to sustainable energy recovery from fossil fuels reservoirs. Part 1. Investigation of high-temperature reactions between sulfur oxy anions and crude oil. Fuel, 302: 121050.

Jin, X., Wu, J., Fang, P., Zhang, Z., Li, M., Zhong, N., 2021. Kinetics and fate of organosulphur compounds during the metagenesis stage of thermal maturation: Hydrous pyrolysis investigations on dibenzothiophene. Marine and Petroleum Geology, 130: 105129.

Qi, W., Wu, J., Xia, Y., Zhang, X., Li, Z., Chang, J., Bai, J., 2021. Influence of ionic composition on minerals and source rocks: An investigation between carbonate-type and sulfate-type lacustrine sediments based on hydrochemical classification. Marine and Petroleum Geology, 130: 105099.

·½Åó, Îâ¼Î, ÀÌì, ÍõÑ¡²ß, ÖÓÄþÄþ, 2021. ²î±ðÏ´ÍÑ·¨ÊèÉ¢Á¤ÇàÖÊÎü¸½ÌþµÄ±ÈÕÕ. ʯÓÍѧ±¨, 42(05): 623-633+653.

Luo, Q., Zhang, L., Zhong, N., Wu, J., Goodarzi, F., Sanei, H., Skovsted, C.B., Such?, V., Li, M., Ye, X., Cao, W., Liu, A., Min, X., Pan, Y., Yao, L., Wu, J., 2021. Thermal evolution behavior of the organic matter and a ray of light on the origin of vitrinite-like maceral in the Mesoproterozoic and Lower Cambrian black shales: Insights from artificial maturation. International Journal of Coal Geology, 244: 103813.

Zheng, X., Sanei, H., Schovsbo, N.H., Luo, Q., Wu, J., Zhong, N., Galloway, J.M., Goodarzi, F., 2021. Role of zooclasts in the kerogen type and hydrocarbon potential of the lower Paleozoic Alum Shale. International Journal of Coal Geology, 248: 103865.

Wang, S., Lu, K., Wang, T., Wu, J., Zheng, H., Huang, Y., 2020. A method for isotope exchange kinetics in mineral-water system-an in-situ study on oxygen isotope exchange in Na2CO3-H2O system. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 241, 118648.

Luo, Q., Fariborz, G., Zhong, N., Wang, Y., Qiu, N., Skovsted, C.B., Such?, V., Hemmingsen Schovsbo, N., Morga, R., Xu, Y., Hao, J., Liu, A., Wu, J., Cao, W., Min, X., Wu, J., 2020. Graptolites as fossil geo-thermometers and source material of hydrocarbons: An overview of four decades of progress. Earth-Science Reviews. 200, 103000.

Jin, X., Zhang, Z., Wu, J., Zhang, C., He, Y., Cao, L., Zheng, R., Meng, W., Xia, H., 2019. Origin and geochemical implication of relatively high abundance of 17¦Á (H)-diahopane in Yabulai basin, northwest China. Mar Petrol Geol. 99, 429-442.

Yang Sibo, Li Meijun, Liu Xiaoqiang, Han Qiuya, Wu Jia, Zhong Ningning. , 2019. Thermodynamic stability of methyldibenzothiophenes in sedimentary rock extracts: Based on molecular simulation and geochemical data. Organic Geochemistry, 129, 24-41.

ÍõÊÀϼ, ÑîÃÎ, Îâ¼Î, Ö£º£·É, 2019. Ë®ÈȽð¸ÕʯѹǻÍŽáÀ­Âü¹âÆ×ÊÖÒÕ¾ÙÐÐNa2SO4-ˮϵͳÏûÈڽᾧ¶¯Á¦Ñ§Ñо¿Îö. ¹âÆ×ѧÓë¹âÆ×ÆÊÎö. 39, 3698-3704.

ÍõÊÀϼ, ÕÔ껳½, Îâ¼Î, Ö£º£·É, 2018. À­Âü¹âÆ×Ñо¿±½-ÖØË®¼äÇâͬλËØ·ÖÁóЧӦ. ¹âÆ×ѧÓë¹âÆ×ÆÊÎö. 38, 1107-1111.


ÍŶÓרÀû

Îâ¼Î,ÍõÔ¶,¼¾¸»¼Î,ÖÓÄþÄþ. Ò»ÖֿɿؼÓÇâÉúÌþÈÈÄ£ÄâʵÑéÒªÁìºÍ×°ÖÃ. 201911324491.4, 2019Äê12ÔÂ20ÈÕ. ¹ú¼Ò·¢Ã÷רÀû

·½Åó,Îâ¼Î,ÀÌì,Æëö©,ÀîÃÀ¿¡,ÖÓÄþÄþ. Ò»ÖÖÊèÉ¢ÓëÁ¤ÇàÖʹ²³ÁµíµÄС·Ö×ÓÌþµÄÒªÁì. 202010030777.8, 2020Äê01ÔÂ13ÈÕ. ¹ú¼Ò·¢Ã÷רÀû


ѧÊõÔ˶¯

2022Äê10Ô £¬Öйú±±¾© £¬µÚ°Ë½ìÓÍÆø³É²Ø»úÀíÓëÓÍÆø×ÊÔ´ÆÀ¼Û¹ú¼ÊѧÊõ×êÑлá¡£¿ÚÍ·±¨¸æ£º³Á»ýÅèµØÇéÐÎÇâÒݶȣº»®·ÖÉî²ãÉúÌþÐÐΪµÄÐÂά¶È£»»ùÓÚÁ¤ÇàÖÊ°ü¹üÌþÎÞËðÆÊÎöµÄÓÍÔ´Ñо¿ÐÂÒªÁ죨ѧÉú£©¡£

2021Äê7Ô £¬ÖйúÉϺ£ £¬µÚÁù½ìµØÇòϵͳ¿Æѧ´ó»á¡£¿ÚÍ·±¨¸æ£º³Á»ýÅèµØÑõ»¯»¹Ô­Ìõ¼þ¶ÔÉúÌþÑÝ»¯µÄÓ°Ïì¼°ÒâÒå¡£

2021Äê4Ô £¬Öйú¹óÑô £¬µÚÎå½ìÌìÏÂÇàÄêµØÖÊ´ó»á¡£¿ÚÍ·±¨¸æ£ºÓÉË®-ÑÒÏ໥×÷ÓÃÏÞÖƵÄÑõ»¯»¹Ô­Ìõ¼þ¶Ô³Á»ýÓлúÖÊÈÈÑÝ»¯µÄÓ°Ïì¡£

2019Äê12Ô £¬Öйú¸£ÖÝ £¬µÚÊ®Æß½ìÌìÏÂÓлúµØÇò»¯Ñ§Ñ§Êõ¾Û»á¡£´ó»á±¨¸æ£º³¬Éî²ãÓÍÆøÌìÉúÆøÀíµÄʵÑé̽Ë÷£»·Ö»á³¡Ö÷Ìⱨ¸æ£ºÁòËáÑζԸÉÀÒ¸ùÉúÌþ²úÆ·×å×é·ÖµÄÓ°Ï죺һÖÖеÄÓлú-ÎÞ»úÏ໥×÷ÓÃÐÎʽ¡£

2019Äê10Ô £¬Öйú±±¾© £¬AAPG GTW¡£¿ÚÍ·±¨¸æ£ºInfluence of sulfate on S.A.R.A. fraction of soluble organic product from thermal decomposition of kerogen.

2019Äê9Ô £¬Èðµä¸çµÂ±¤ £¬29th IMOG¡£Õ¹°å±¨¸æ£ºInfluence of sulfate on S.A.R.A. fraction of soluble organic product from thermal decomposition of kerogen

2019Äê8Ô £¬Î÷°àÑÀ°ÍÈûÂÞÄÉ £¬Goldschdmit2019¡£¿ÚÍ·/Õ¹°å±¨¸æ£ºInfluence of sulfate on S.A.R.A. fraction of soluble organic product from thermal degradation of kerogen £¨J. WU*, W. QI, Q. LUO, Q. MA£©

2017Äê12Ô £¬ÖйúÖØÇì £¬µÚÊ®Áù½ìÌìÏÂÓлúµØÇò»¯Ñ§Ñ§Êõ¾Û»á¡£¿ÚÍ·±¨¸æ£º¶þ¼×»ù¶þ±½²¢àç·ÔDZÔÚÌìÉúÆøÀíµÄʵÑéÑо¿£¨³ÂȪ £¬Îâ¼Î* £¬ÖÓÄþÄþ £¬ÀîÃÀ¿¡ £¬Ê¦Éú±¦£©£»Õ¹°å±¨¸æ£ºº¬Ë®ÏµÍ³¶þ±½²¢àç·ÔÈÈÎȹÌÐÔÑо¿£¨½ðÏö £¬Îâ¼Î* £¬ÕÅÖ¦»À£©

2017Äê10Ô £¬Öйú±±¾© £¬µÚÆß½ìÓÍÆø³É²Ø»úÀíÓëÓÍÆø×ÊÔ´ÆÀ¼Û¹ú¼ÊѧÊõ×êÑлá¡£Õ¹°å±¨¸æ£ºExperimental investigation on one of the potential generation mechanisms of dibenzothiophene (DBT) and its methylated homologues. »ñÇàÄêѧÕßÓÅÒìÕ¹°å±¨¸æ½±¡£

2017Äê9Ô £¬Òâ´óÀû·ðÂÞÂ×Èø £¬28th IMOG¡£Õ¹°å±¨¸æ£ºExperimental investigation on one of the potential generation mechanisms of dibenzothiophene (DBT) and its methylated homologues.

2016Äê6Ô £¬ÈÕ±¾ºá±õ £¬Goldschmidt2016¡£Õ¹°å±¨¸æ£ºExperimental determination of DFHbl/Flu in F-bearing systems at lower crust P?T conditions.

2016Äê6Ô £¬ÈðÊ¿ËÕÀèÊÀ £¬EMPG¡£Õ¹°å±¨¸æ£ºFluorine determination of aqueous fluid extracted from high P?T experiments: Direct analysis.

2015Äê8Ô £¬½Ý¿Ë²¼À­¸ñ £¬Goldschmidt2015¡£¿ÚÍ·±¨¸æ£ºDFHbl/Flu at lower crust P?T conditions determined by direct measurements on extracted fluids.

2013Äê9Ô £¬ÉϺ£¸ßѹÏȽø¿ÆѧÑо¿ÖÐÐÄ £¬Ô¼Ç뱨¸æ£ºExperimental determination of F partitioning between fluid and hydrous minerals in subduction zones.

2012Äê3Ô £¬µÂ¹ú»ù¶û £¬EMPG¡£¿ÚÍ·±¨¸æ£ºFluorine partitioning between hydrous minerals and aqueous fluid at 1 GPa and 770 ¨C 947 ?C.

2011Äê8Ô £¬½Ý¿Ë²¼À­¸ñ £¬Goldschmidt2011¡£¿ÚÍ·±¨¸æ£ºFluorine partitioning between hydrous minerals and aqueous fluid at 1 GPa and 770 ¨C 850 ?C.


½Ì¸ÄÏîÄ¿¼°ÂÛÎÄ

¡°ÓÍÆøµØÇò»¯Ñ§¡±ÖÐÑо¿ÐÔÍ·ÄԵĽÌѧÑо¿ £¬2017Äê7ÔÂ-2019Äê6Ô £¬¹«º£²Ê´¬£¨±±¾©£©½ÌÓý½ÌѧˢÐÂÏîÄ¿¡£

Îâ¼Î £¬Íõ¹ãÀû £¬ÀîÃÀ¿¡. 2022. »ùÓÚÓÍÆøµØÇò»¯Ñ§Àà¿Î³ÌµÄÑо¿ÐÔ½Ìѧ̽Ë÷ £¬¸ß½Ìѧ¿¯. 2022(14):70-73.

ÀîÃÀ¿¡ £¬Ð¤ ºé £¬Íõ´º½­ £¬Î⠼Π£¬Ê¦Éú±¦. 2022. dz̸¿ÆÑÐÏîÄ¿Óë¿Æ¼¼Á¢ÒìµÄ¹Øϵ¡ª¡ªÒÔÑо¿Éú¿ÆÑÐÏîĿΪÀý. 2022(52):1-5.


È˲Å×÷ÓýÀíÄî

ÒÔÄÜÁ¦×÷ÓýΪµ¼Ïò £¬ÒÔ¿ÆѧÑо¿ÎªÇ°ÑÔ £¬Í¨¹ýѵÁ·Ñ§ÉúÑо¿¿ÆѧÎÊÌâµÄÀú³Ì £¬Ê¹Ö®Òâ»á×öʵÄÒªÁìºÍÄÚÔÚÂß¼­ £¬²¢¾ß±¸ÎÅһ֪ʮµÄÃôÈñ¸Ð £¬×îÖÕµÖ´ïÄÜÁ¦ÌáÉýµÄÄ¿µÄ¡£

ÔÚÎâ¼Î¿ÎÌâ×éÀï £¬¿ÉÒÔ»ñµÃ£º

1¡¢Ï꾡µÄÖ¸µ¼£»

2¡¢×ÔÓÉÒ»ÂɵÄѧÊõÆø·Õ£»

3¡¢Ñ§Ï°¹ú¼ÊÁìÏȵÄʵÑéÊÖÒÕ£»

4¡¢Ì½Ë÷ÌìÏÂÇ°ÑØ¿ÆѧÎÊÌâµÄʱ»ú£»

5¡¢Ó뺣ÄÚÍâר¼Ò½»Á÷ÏàÖúµÄʱ»ú¡£


ÍŶӽ¨Éè¼°ÕÐÉúÒªÇó

È˸ñÒ»ÂÉÊÇÍŶÓЭµ÷Éú³¤µÄÌõ¼þ¡£ÎÒÏ£Íû¼ÓÈëÍŶӵIJ»µ«ÊÇÒ»¸ö3-5ÄêµÄѧÉú £¬²¢ÇÒÊÇÒ»¸öÖµµÃ¹²ÊµÄÏàÖúͬ°é¡£Ñ§ÊõÆ·µÂµ×Ïß½ûÖ¹´¥Åö £¬¶Ô´ËʵÑéһƱ·´¶Ô¡£³ý´ËÒÔÍâ £¬ÏÂÃ漸ÌõÕÐÉú±ê×¼¹©²Î¿¼£º

1¡¢Ï꾡ÄÍÐÄ £¬ÉíÐÄ¿µ½¡ £¬ÉÆÓÚµ÷ÀíÇéÐ÷¡¢»º½âѹÁ¦¡£

2¡¢ÓÅÒìµÄÏÂÊÖÄÜÁ¦¡¢¿ìËÙѧϰÄÜÁ¦ºÍÏàͬÄÜÁ¦£»Ö´ÐÐÁ¦Ç¿ £¬Ð§Âʸß¡£

3¡¢Í·ÄÔÎÞа̹µ´ £¬ÉÆÓÚ½«Ïë·¨ËßÖîʵ¼ù¡£

ÕÐÉúÆ«Ïò£ºÑ§ÊõÐͲ©Ê¿£¨µØÖÊѧ£©£»Ñ§ÊõÐÍ˶ʿ£¨µØÖÊѧ£»µØÖÊ×ÊÔ´ÓëµØÖʹ¤³Ì£©£»×¨ÒµÐÍ˶ʿ£¨µØÖʹ¤³Ì£©¡£


TOP
¡¾ÍøÕ¾µØͼ¡¿¡¾sitemap¡¿
¡¾ÍøÕ¾µØͼ¡¿¡¾sitemap¡¿